
From	Templates	to	Folds

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	6.3

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction

• Last	week,	we	saw	how	the	built-in	mapping	
functions	on	lists,	like	map,	filter,	and	foldr,	
made	writing	functions	on	lists	easier.		

• In	this	lesson	we'll	see	how	we	can	do	
something	similar	for	any	recursive	data	
definition.

2

Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
–Write	a	fold	function	for	any	recursive	data	
definition

– Use	the	fold	function	to	define	useful	functions	on	
that	data

3

Binary	Trees

(define-struct leaf (datum))
(define-struct node (lson rson))

;; A Tree is either
;; -- (make-leaf Number)
;; -- (make-node Tree Tree)

4

Here	is	the	definition	 of	a	binary	
tree	again.

Template
tree-fn : Tree -> ???
(define (tree-fn t)
(cond
[(leaf? t) (... (leaf-datum t))]
[else (...

(tree-fn (node-lson t))
(tree-fn (node-rson t)))]))

5

Self-reference	 in	the	data	definition	
leads	to	self-reference	 in	the	template;
Self-reference	 in	the	template	leads	to	
self-reference	 in	the	code.

And	here	is	the	template	again.

The	template	has	two	blanks
tree-fn : Tree -> ???
(define (tree-fn t)
(cond
[(leaf? t) (... (leaf-datum t))]
[else (...

(tree-fn (node-lson t))
(tree-fn (node-rson t)))]))

6

Two	blanks:	one	blue	and	one	
orange

From	templates	to	folds

• Observe	that	the	template	has	two	blanks:	the	
blue	one	and	the	orange	one.

• Any	two	functions	that	follow	the	template	
will	be	the	same	except	for	what	goes	in	the	
blanks.

• So	we	can	generalize	them	by	adding	
arguments	for	each	blank.

7

Template	è tree-fold
tree-fold : ... Tree -> ???
(define (tree-fold combiner base t)
(cond
[(leaf? t) (base (leaf-datum t))]
[else (combiner

(tree-fold combiner base
(node-lson t))

(tree-fold combiner base
(node-rson t)))]))

8

tree-fold : ... Tree -> ???
(define (tree-fold combiner base t)
(cond
[(leaf? t) (... (leaf-datum t))]
[else (...

(tree-fold combiner base
(node-lson t))

(tree-fold combiner base
(node-rson t)))]))

Corresponding	 to	each	blank,	we	add	an	extra	argument:	combiner (in	blue)	 for	the	
blue	blank	and	base (in	orange)	 for	the	orange	blank,	and	we	pass	these	arguments	 to	
each	of	the	recursive	calls,	just	like	we	did	 for	lists.		The	strategy	for	tree-fold	is	"Use	
template	for	Tree	on	t"

What's	the	contract	for	tree-fold?
tree-fold
: (X X -> X) (Number -> X) Tree -> X
(define (tree-fold combiner base t)
(cond
[(leaf? t) (base (leaf-datum t))]
[else (combiner

(tree-fold combiner base
(node-lson t))

(tree-fold combiner base
(node-rson t)))]))

9

(Number -> X)

(X X -> X)

X X

X

contract for
base

contract for
combiner

Let's	figure	out	
the	contract	for	
tree-fold.		Let's	
analyze	the	
subexpressions to	
see	what	kind	of	
value	they	return.

If	the	whole	function	
returns	an	X,	then	

(base	(leaf-datum	t))
must	return	an	X.

(leaf-datum	t)	returns	
a	number,	and		

(base	(leaf-datum	t))
must	return	an	X,	so	

basemust	be
(Number	->	X)Since	tree-fold returns	

an	X,	the	arguments	to	
combiner are	both	X's,	
and	combiner itself	must	

return	an	X.

So	combiner	must	be	an	
(X	X ->	X)

Let's	assume	 the	
whole	function	 returns	

an	X.

Be	sure	to	reconstruct	the	original	
functions!

(define (tree-sum t)
(tree-fold + (lambda (n) n) t))

(define (tree-min t)
(tree-fold min (lambda (n) n) t))

(define (tree-max t)
(tree-fold max (lambda (n) n) t))

10

Here	are	our	original	
functions,	 sum,	tree-min,	and	
tree-max,	rewritten	using	
tree-fold.

The	strategy	for	each	of	these	
is	"Call	a	more	general	
function."

Another	example	of	trees:	Ancestor	
Trees

(define-struct person (name father mother))
(define-struct adam ())
(define-struct eve ())

;; A Person is either
;; -- (make-adam)
;; -- (make-eve)
;; -- (make-person String Person Person)

;; person-fn : Person -> ???
(define (person-fn p)
(cond
[(adam? p) ...]
[(eve? p) ...]
[else (...

(person-name p)
(person-fn (person-father p))
(person-fn (person-mother p)))]))

11

Self-reference	in	the	data	
definition	 leads	to	self-
reference	in	the	template;
Self-reference	in	the	
template	leads	to	self-
reference	in	the	code.

Template	for	Person
;; person-fn : Person -> ???
(define (person-fn p)
(cond
[(adam? p) ...]
[(eve? p) ...]
[else (...

(person-name p)
(person-fn (person-father p))
(person-fn (person-mother p)))]))

12

Here's	the	template	for	our	
ancestor	trees.		We	have	three	
blanks:	one	blue,	one	purple,	
and	one	orange.

From	template	to	fold:
;; person-fold : ... Person -> ???
(define (person-fold adam-val eve-val combiner p)
(cond
[(adam? p) adam-val]
[(eve? p) eve-val]
[else (combiner

(person-name p)
(person-fold adam-val eve-val combiner
(person-father p))
(person-fold adam-val eve-val combiner
(person-mother p)))]))

13

Corresponding	 to	our	three	blanks	we	
add	three	arguments:	 the	value	for	
adam (in	blue),	 the	value	for	eve (in	
purple)	 and	the	combiner (in	orange).

What's	the	contract	for	person-fold?

;; person-fold
;; : X X (String X X -> X) Person -> X
(define (person-fold adam-val eve-val combiner p)
(cond
[(adam? p) adam-val]
[(eve? p) eve-val]
[else (combiner

(person-name p)
(person-fold adam-val eve-val combiner
(person-father p))
(person-fold adam-val eve-val combiner
(person-mother p)))]))

14

X

(String X X -> X)

String

X

X

We	can	work	out	the	contract	for	person-fold the	same	way	that	we	did	for	tree-
fold.		Here	again	we've	marked	some	of	the	sub-expressions	 with	the	kind	of	
value	they	return.	

Observe,	 as	before,	that	the	arguments	to	combinermatch	combiner's	contract,	
and	that	all	three	branches	of	the	cond return	an	X,	so	the	whole	function	 is	
guaranteed	to	return	an	X.

Summary

• You	should	be	able	to:
–Write	a	fold	function	for	any	recursive	data	
definition

– Use	the	fold	function	to	define	useful	functions	on	
that	data

15

Next	Steps

• Study	the	file	06-3-tree-folds.rkt	in	the	
Examples	folder.

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	6.3
• Go	on	to	the	next	lesson

16

